Peterbe.com

A blog and website by Peter Bengtsson

Filtered home page!
Currently only showing blog entries under the category: Python. Clear filter

An effective and immutable way to turn two Python lists into one

23 June 2021 7 comments   Python


tl;dr; To make 2 lists into 1 without mutating them use list1 + list2.

I'm blogging about this because today I accidentally complicated my own code. From now on, let's just focus on the right way.

Suppose you have something like this:

winners = [123, 503, 1001]
losers = [45, 812, 332]

combined = winners + losers

that will create a brand new list. To prove that it's immutable:

>>> combined.insert(0, 100)
>>> combined
[100, 123, 503, 1001, 45, 812, 332]
>>> winners
[123, 503, 1001]
>>> losers
[45, 812, 332]

What I originally did was:

winners = [123, 503, 1001]
losers = [45, 812, 332]

combined = [*winners, *losers]

This works the same and that syntax feels very JavaScript'y. E.g.

> var winners = [123, 503, 1001]
[ 123, 503, 1001 ]
> var losers = [45, 812, 332]
[ 45, 812, 332 ]
> var combined = [...winners, ...losers]
[ 123, 503, 1001, 45, 812, 332 ]
> combined.pop()
332
> losers
[ 45, 812, 332 ]

By the way, if you want to filter out duplicates, do this:

>>> a = [1, 2, 3]
>>> b = [2, 3, 4]
>>> list(dict.fromkeys(a + b))
[1, 2, 3, 4]

It's the most performant way to do it if the order is important.

And if you don't care about the order you can use this:

>>> a = [1, 2, 3]
>>> b = [2, 3, 4]
>>> list(set(a + b))
[1, 2, 3, 4]
>>> list(set(b + a))
[1, 2, 3, 4]

The correct way to index data into Elasticsearch with (Python) elasticsearch-dsl

14 May 2021 0 comments   Python, MDN, Elasticsearch


This is how MDN Web Docs uses Elasticsearch. Daily, we build all the content and then upload it all using elasticsearch-dsl using aliases. Because there are no good complete guides to do this, I thought I'd write it down for the next person who needs to do something similar. Let's jump straight into the code. The reader will need a healthy dose of imagination to fill in their details.

Indexing

# models.py

from datetime.datetime import utcnow

from elasticsearch_dsl import Document

PREFIX = "myprefix"


class MyDocument(Document):
    title = Text()
    body = Text()
    # ...

    class Index:
        name = (
            f'{PREFIX}_{utcnow().strftime("%Y%m%d%H%M%S")}'
        )

What's important to note here is that the MyDocument.Index.name is dynamically allocated every single time the module is imported. It's not very important exactly what it is called but it's important that it becomes unique each time.
This means that when you start using MyDocument it will automatically figure out which index to use. Now, it's time to create the index and bulk publish it.

# index.py
# Note! This example code skips over things like progress bars
# and verbose logging and misc sanity checks and stuff.

from elasticsearch.helpers import parallel_bulk
from elasticsearch_dsl import Index
from elasticsearch_dsl.connections import connections

from .models import MyDocument, PREFIX


def index(buildroot: Path, url: str, update=False):
    """
    * 'buildroot' is where the files are we're going to read and index
    * 'url' is the host URL for the Elasticsearch server
    * 'update' is if just want to "cake on" a couple of documents 
      instead of starting over and doing a complete indexing.
    """

    # Connect and stuff
    connections.create_connection(hosts=[url], retry_on_timeout=True)
    connection = connections.get_connection()
    health = connection.cluster.health()
    status = health["status"]
    if status not in ("green", "yellow"):
        raise Exception(f"status {status} not green or yellow")

    if update:
        for name in connection.indices.get_alias():
            if name.startswith(f"{PREFIX}_"):
                document_index = Index(name)
                break
        else:
            raise IndexAliasError(
                f"Unable to find an index called {PREFIX}_*"
            )

    else:
        # Confusingly, `._index` is actually not a private API.
        # It's the documented way you're supposed to reach it.
        document_index = MyDocument._index
        document_index.create()

    def generator():
        for doc in Path(buildroot):
            # The reason for specifying the exact index name is that we might
            # be doing an update and if you don't specify it, elasticsearch_dsl
            # will fall back to using whatever Document._meta.Index automatically
            # becomes in this moment.
            yield to_search(doc, _index=document_index._name).to_dict(True)

    for success, info in parallel_bulk(connection, generator()):
        # 'success' is a boolean
        # 'info' has stuff like:
        #  - info["index"]["error"]
        #  - info["index"]["_shards"]["successful"]
        #  - info["index"]["_shards"]["failed"]
        pass

    if update:
        # When you do an update, Elasticsearch will internally delete the
        # previous docs (based on the _id primary key we set).
        # Normally, Elasticsearch will do this when you restart the cluster
        # but that's not something we usually do.
        # See https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
        document_index.forcemerge()
    else:
        # Now we're going to bundle the change to set the alias to point
        # to the new index and delete all old indexes.
        # The reason for doing this together in one update is to make it atomic.
        alias_updates = [
            {"add": {"index": document_index._name, "alias": PREFIX}}
        ]
        for index_name in connection.indices.get_alias():
            if index_name.startswith(f"{PREFIX}_"):
                if index_name != document_index._name:
                    alias_updates.append({"remove_index": {"index": index_name}})
        connection.indices.update_aliases({"actions": alias_updates})

    print("All done!")



def to_search(file: Path, _index=None):
    with open(file) as f:
        data = json.load(f)
    return MyDocument(
        _index=_index,
        _id=data["identifier"],
        title=data["title"],
        body=data["body"]
    )

A lot is left to the reader as an exercise to fill in but these are the most important operations. It demonstrates how you can

  1. Correctly create indexes
  2. Atomically create an alias and clean up old indexes (and aliases)
  3. How you can add to an existing index

After you've run this you'll see something like this:

$ curl http://localhost:9200/_cat/indices?v
...
health status index                   uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   myprefix_20210514141421 vulVt5EKRW2MNV47j403Mw   1   1      11629            0     28.7mb         28.7mb

$ curl http://localhost:9200/_cat/aliases?v
...
alias    index                   filter routing.index routing.search is_write_index
myprefix myprefix_20210514141421 -      -             -              -

Searching

When it comes to using the index, well, it depends on where your code for that is. For example, on MDN Web Docs, the code that searches the index is in an entirely different code-base. It's incidentally Python (and elasticsearch-dsl) in both places but other than that they have nothing in common. So for the searching, you need to manually make sure you write down the name of the index (or name of the alias if you prefer) into the code that searches. For example:

from elasticsearch_dsl import Search

def search(params):
    search_query = Search(index=settings.SEARCH_INDEX_NAME)

    # Do stuff to 'search_query' based on 'params'

    response = search_query.execute()   
    for hit in response:
        # ...

If you're within the same code that has that models.MyDocument in the first example code above, you can simply do things like this:

from elasticsearch_dsl import Index
from elasticsearch_dsl.connections import connections

from .models import PREFIX


def analyze(
    url: str,
    text: str,
    analyzer: str,
):
    connections.create_connection(hosts=[url])
    index = Index(PREFIX)
    analysis = index.analyze(body={"text": text, "analyzer": analyzer})
    # ...

Umlauts (non-ascii characters) with git on macOS

22 March 2021 0 comments   Python, MacOSX


I edit a file called files/en-us/glossary/bézier_curve/index.html and then type git status and I get this:

▶ git status
...
Changes not staged for commit:
  ...
    modified:   "files/en-us/glossary/b\303\251zier_curve/index.html"

...

What's that?! First of all, I actually had this wrapped in a Python script that uses GitPython to analyze the output of for change in repo.index.diff(None):. So I got...

FileNotFoundError: [Errno 2] No such file or directory: '"files/en-us/glossary/b\\303\\251zier_curve/index.html"'

What's that?!

At first, I thought it was something wrong with how I use GitPython and thought I could force some sort of conversion to UTF-8 with Python. That, and to strip the quotation parts with something like path = path[1:-1] if path.startwith('"') else path

After much googling and experimentation, what totally solved all my problems was to run:

▶ git config --global core.quotePath false

Now you get...:

▶ git status
...
Changes not staged for commit:
  ...
    modified:   files/en-us/glossary/bézier_curve/index.html

...

And that also means it works perfectly fine with any GitPython code that does something with the repo.index.diff(None) or repo.index.diff(repo.head.commit).

Also, we I use the git-diff-action GitHub Action which would fail to spot files that contained umlauts but now I run this:

    steps:
       - uses: actions/checkout@v2
+
+      - name: Config git core.quotePath
+        run: git config --global core.quotePath false
+
       - uses: technote-space/get-diff-action@v4.0.6
         id: git_diff_content
         with:

How MDN's site-search works

26 February 2021 3 comments   Web development, Django, Python, MDN, Elasticsearch


tl;dr; Periodically, the whole of MDN is built, by our Node code, in a GitHub Action. A Python script bulk-publishes this to Elasticsearch. Our Django server queries the same Elasticsearch via /api/v1/search. The site-search page is a static single-page app that sends XHR requests to the /api/v1/search endpoint. Search results' sort-order is determined by match and "popularity".

Jamstack'ing

The challenge with "Jamstack" websites is with data that is too vast and dynamic that it doesn't make sense to build statically. Search is one of those. For the record, as of Feb 2021, MDN consists of 11,619 documents (aka. articles) in English. Roughly another 40,000 translated documents. In English alone, there are 5.3 million words. So to build a good search experience we need to, as a static site build side-effect, index all of this in a full-text search database. And Elasticsearch is one such database and it's good. In particular, Elasticsearch is something MDN is already quite familiar with because it's what was used from within the Django app when MDN was a wiki.

Note: MDN gets about 20k site-searches per day from within the site.

Build

Diagram

When we build the whole site, it's a script that basically loops over all the raw content, applies macros and fixes, dumps one index.html (via React server-side rendering) and one index.json. The index.json contains all the fully rendered text (as HTML!) in blocks of "prose". It looks something like this:

{
  "doc": {
    "title": "DOCUMENT TITLE",
    "summary": "DOCUMENT SUMMARY",
    "body": [
      {
        "type": "prose", 
        "value": {
          "id": "introduction", 
          "title": "INTRODUCTION",
          "content": "<p>FIRST BLOCK OF TEXTS</p>"
       }
     },
     ...
   ],
   "popularity": 0.12345,
   ...
}

You can see one here: /en-US/docs/Web/index.json

Indexing

Next, after all the index.json files have been produced, a Python script takes over and it traverses all the index.json files and based on that structure it figures out the, title, summary, and the whole body (as HTML).

Next up, before sending this into the bulk-publisher in Elasticsearch it strips the HTML. It's a bit more than just turning <p>Some <em>cool</em> text.</p> to Some cool text. because it also cleans up things like <div class="hidden"> and certain <div class="notecard warning"> blocks.

One thing worth noting is that this whole thing runs roughly every 24 hours and then it builds everything. But what if, between two runs, a certain page has been removed (or moved), how do you remove what was previously added to Elasticsearch? The solution is simple: it deletes and re-creates the index from scratch every day. The whole bulk-publish takes a while so right after the index has been deleted, the searches won't be that great. Someone could be unlucky in that they're searching MDN a couple of seconds after the index was deleted and now waiting for it to build up again.
It's an unfortunate reality but it's a risk worth taking for the sake of simplicity. Also, most people are searching for things in English and specifically the Web/ tree so the bulk-publishing is done in a way the most popular content is bulk-published first and the rest was done after. Here's what the build output logs:

Found 50,461 (potential) documents to index
Deleting any possible existing index and creating a new one called mdn_docs
Took 3m 35s to index 50,362 documents. Approximately 234.1 docs/second
Counts per priority prefixes:
    en-us/docs/web                 9,056
    *rest*                         41,306

So, yes, for 3m 35s there's stuff missing from the index and some unlucky few will get fewer search results than they should. But we can optimize this in the future.

Searching

The way you connect to Elasticsearch is simply by a URL it looks something like this:

https://USER:PASSWD@HASH.us-west-2.aws.found.io:9243

It's an Elasticsearch cluster managed by Elastic running inside AWS. Our job is to make sure that we put the exact same URL in our GitHub Action ("the writer") as we put it into our Django server ("the reader").
In fact, we have 3 Elastic clusters: Prod, Stage, Dev.
And we have 2 Django servers: Prod, Stage.
So we just need to carefully make sure the secrets are set correctly to match the right environment.

Now, in the Django server, we just need to convert a request like GET /api/v1/search?q=foo&locale=fr (for example) to a query to send to Elasticsearch. We have a simple Django view function that validates the query string parameters, does some rate-limiting, creates a query (using elasticsearch-dsl) and packages the Elasticsearch results back to JSON.

How we make that query is important. In here lies the most important feature of the search; how it sorts results.

In one simple explanation, the sort order is a combination of popularity and "matchness". The assumption is that most people want the popular content. I.e. they search for foreach and mean to go to /en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach not /en-US/docs/Web/API/NodeList/forEach both of which contains forEach in the title. The "popularity" is based on Google Analytics pageviews which we download periodically, normalize into a floating-point number between 1 and 0. At the of writing the scoring function does something like this:

rank = doc.popularity * 10 + search.score

This seems to produce pretty reasonable results.

But there's more to the "matchness" too. Elasticsearch has its own API for defining boosting and the way we apply is:

This is then applied on top of whatever else Elasticsearch does such as "Term Frequency" and "Inverse Document Frequency" (tf and if). This article is a helpful introduction.

We're most likely not done with this. There's probably a lot more we can do to tune this myriad of knobs and sliders to get the best possible ranking of documents that match.

Web UI

The last piece of the puzzle is how we display all of this to the user. The way it works is that developer.mozilla.org/$locale/search returns a static page that is blank. As soon as the page has loaded, it lazy-loads JavaScript that can actually issue the XHR request to get and display search results. The code looks something like this:

function SearchResults() {
  const [searchParams] = useSearchParams();
  const sp = createSearchParams(searchParams);
  // add defaults and stuff here
  const fetchURL = `/api/v1/search?${sp.toString()}`;

  const { data, error } = useSWR(
    fetchURL,
    async (url) => {
      const response = await fetch(URL);
      // various checks on the response.statusCode here
      return await response.json();
    }
  );

  // render 'data' or 'error' accordingly here

A lot of interesting details are omitted from this code snippet. You have to check it out for yourself to get a more up-to-date insight into how it actually works. But basically, the window.location (and pushState) query string drives the fetch() call and then all the component has to do is display the search results with some highlighting.

The /api/v1/search endpoint also runs a suggestion query as part of the main search query. This extracts out interest alternative search queries. These are filtered and scored and we issue "sub-queries" just to get a count for each. Now we can do one of those "Did you mean...". For example: search for intersections.

In conclusion

There are a lot of interesting, important, and careful details that are glossed over here in this blog post. It's a constantly evolving system and we're constantly trying to improve and perfect the system in a way that it fits what users expect.

A lot of people reach MDN via a Google search (e.g. mdn array foreach) but despite that, nearly 5% of all traffic on MDN is the site-search functionality. The /$locale/search?... endpoint is the most frequently viewed page of all of MDN. And having a good search engine that's reliable is nevertheless important. By owning and controlling the whole pipeline allows us to do specific things that are unique to MDN that other websites don't need. For example, we index a lot of raw HTML (e.g. <video>) and we have code snippets that needs to be searchable.

Hopefully, the MDN site-search will elevate from being known to be very limited to something now that can genuinely help people get to the exact page better than Google can. Yes, it's worth aiming high!

fastest way to turn HTML into text in Python

08 January 2021 2 comments   Python


tl;dr; selectolax is best for stripping HTML down to plain text.

The problem is that I have 10,000+ HTML snippets that I need to index into Elasticsearch as plain text. (Before you ask, yes I know Elasticsearch has a html_strip text filter but it's not what I want/need to use in this context).
Turns out, stripping the HTML into plain text was actually quite expensive at that scale. So what's the most performant way?

PyQuery

from pyquery import PyQuery as pq

text = pq(html).text()

selectolax

from selectolax.parser import HTMLParser

text = HTMLParser(html).text()

regular expression

import re

regex = re.compile(r'<.*?>')
text = clean_regex.sub('', html)

Results

I wrote a script that iterated through 10,000 files that contains HTML snippets. Note! The snippets aren't complete <html> documents (with a <head> and <body> etc) Just blobs of HTML. The average size is 10,314 bytes (5,138 bytes median).

pyquery
  SUM:    18.61 seconds
  MEAN:   1.8633 ms
  MEDIAN: 1.0554 ms
selectolax
  SUM:    3.08 seconds
  MEAN:   0.3149 ms
  MEDIAN: 0.1621 ms
regex
  SUM:    1.64 seconds
  MEAN:   0.1613 ms
  MEDIAN: 0.0881 ms

I've run it a bunch of times. The results are pretty stable.

Point is: selectolax is ~7 times faster than PyQuery

Regex? Really?

No, I don't think I want to use that. It makes me nervous without even attempting to dig up some examples where it goes wrong. It might work just fine for the most basic blobs of HTML. Actually, if the HTML is <p>Foo &amp; Bar</p>, I expect the plain text transformation should be Foo & Bar, not Foo &amp; Bar.

More pressing, both PyQuery and selectolax supports something very specific but important to my use case. I need to remove certain tags (and its content) before I proceed. For example:

<h4 class="warning">This should get stripped.</h4>
<p>Please keep.</p>
<div style="display: none">This should also get stripped.</div>

That can never be done with a regex.

Version 2.0

So my requirement will probably change but basically, I want to delete certain tags. E.g. <div class="warning"> and <div class="hidden"> and <div style="display: none">. So let's implement that:

PyQuery

from pyquery import PyQuery as pq

_display_none_regex = re.compile(r'display:\s*none')

doc = pq(html)
doc.remove('div.warning, div.hidden')
for div in doc('div[style]').items():
    style_value = div.attr('style')
    if _display_none_regex.search(style_value):
        div.remove()
text = doc.text()

selectolax

from selectolax.parser import HTMLParser

_display_none_regex = re.compile(r'display:\s*none')

tree = HTMLParser(html)
for tag in tree.css('div.warning, div.hidden'):
    tag.decompose()
for tag in tree.css('div[style]'):
    style_value = tag.attributes['style']
    if style_value and _display_none_regex.search(style_value):
        tag.decompose()
text = tree.body.text()

This actually works. When I now run the same benchmark for 10,000 of these are the new results:

pyquery
  SUM:    21.70 seconds
  MEAN:   2.1701 ms
  MEDIAN: 1.3989 ms
selectolax
  SUM:    3.59 seconds
  MEAN:   0.3589 ms
  MEDIAN: 0.2184 ms
regex
  Skip

Again, selectolax beats PyQuery by a factor of ~6.

Conclusion

Regular expressions are fast but weak in power. Makes sense.

This selectolax is very impressive.
I got the inspiration from this blog post which sets out to do something very similar to what I'm doing.

I hope this helps someone. Thank you Artem Golubin of selectolax and @lexborisov for Modest which selectolax is built upon.

Gcm - git checkout master or main

21 December 2020 1 comment   Python


I love git on the command line and I actually never use a GUI to navigate git branches. But sometimes, I need scripting to make abstractions that make life more convenient. What often happens is that I need to go back to the "main" branch. I write main in quotation marks because it's not always called main. Sometimes it's called master. And it's tedious to have to remember which one is the default.

So I wrote a script called Gcm:

#!/usr/bin/env python3
import subprocess


def run(*args):
    default_branch = get_default_branch()
    current_branch = get_current_branch()
    if default_branch != current_branch:
        checkout_branch(default_branch)
    else:
        print(f"Already on {default_branch}")
        return 1


def checkout_branch(branch_name):
    subprocess.run(f"git checkout {branch_name}".split())


def get_default_branch():
    res = subprocess.run(
        "git config --worktree --get git-checkout-default.default-branch".split(),
        check=False,
        capture_output=True,
    )
    if res.returncode == 0:
        return res.stdout.decode("utf-8").strip()

    origin_name = "origin"
    res = subprocess.run(
        f"git remote show {origin_name}".split(),
        check=True,
        capture_output=True,
    )
    for line in res.stdout.decode("utf-8").splitlines():
        if line.strip().startswith("HEAD branch:"):
            default_branch = line.replace("HEAD branch:", "").strip()
            subprocess.run(
                f"git config --worktree git-checkout-default.default-branch "
                f"{default_branch}".split(),
                check=True,
            )
            return default_branch

    raise NotImplementedError(f"No remote called {origin_name!r}")


def get_current_branch():
    res = subprocess.run("git branch --show-current".split(), capture_output=True)
    for line in res.stdout.decode("utf-8").splitlines():
        return line.strip()

    res = subprocess.run("git show -s --pretty=%d HEAD".split(), capture_output=True)
    for line in res.stdout.decode("utf-8").splitlines():
        return line.strip()

    raise NotImplementedError("Don't know what to do!")


if __name__ == "__main__":
    import sys

    sys.exit(run(*sys.argv[1:]))

It ain't pretty or a spiffy one-liner, but it works. It assumes that the repo has a remote called origin which doesn't matter if it's the upstream or your fork. Put this script into a file called ~/bin/Gcm and run chmox +x ~/bin/Gcm.

Now, whenever I want to go back to the main branch I type Gcm and it takes me there.

Gcm in action

It might seem silly, and it might not be for you, but I love it and use it many times per day. Perhaps by sharing this tip, it'll inspire someone else to set up something similar for themselves.

Why it's spelled with an uppercase G

I have a pattern (or rule?) that all scripts that I write myself are always capitalized like that. It avoids clashes with stuff I install with brew or other bash/zsh aliases.

For example:

ls -l ~/bin/RemoteVSCodePeterbecom.sh
ls -l ~/bin/Cleanupfiles
ls -l ~/bin/RandomString.py

UPDATE: July 2021

Jason @silverjam Mobarak on Twitter suggested an optimization. I've incorporated his suggestion into the original blog post above. See this twitter thread.
Essentially, it now uses git config --worktree to set and get the outcome of the default branch name so the next time it's needed it does not depend on network.
But watch out, if you, like me, change the default branch of some existing repos from master to main; then you'll need to run: git config --worktree --unset git-checkout-default.default-branch.